An Open-Source Framework for Efficient Co-simulation of Fluid Power Systems

نویسندگان

  • Robert Braun
  • Adeel Asghar
  • Adrian Pop
  • Dag Fritzson
چکیده

Simulation of fluid power systems typically requires models from multiple disciplines. Achieving accurate load dynamics for a system with complex geometry, for example, may require both a 1D model of the hydraulic circuit and a 3D multi-body model. However, most simulation tools are limited to a single discipline. A solution to these kinds of problems is co-simulation, where different tools are coupled and simulated together. Co-simulation can provide increased accuracy, improved modularity and facilitated collaboration between different organizations. Unfortunately, tool coupling typically requires tedious and error-prone manual work. It may also introduce numerical problems. For these reasons, co-simulation is often avoided as long as possible. These problems have been addressed by the development of an open-source framework for asynchronous co-simulation. Simulation tools can be interconnected through a stand-alone master simulation tool. An extensive range of tools is also supported via the Functional Mockup Interface standard. A graphical user interface has been implemented in the OpenModelica Connection Editor. System models can be created and edited from both a schematic view and a 3D view. Numerical robustness is enforced by the use of transmission line modelling. A minimalistic programming interface consisting of only two functions is used. An example model consisting of a hydraulic crane with two arms, two actuators and a hanging load is used to verify the framework. The composite model consists of nine multi-body models, one hydraulic system model and a controller. It is shown that models from various simulation tools can be replaced with a minimal amount of user input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Review, analysis and simulation of different structures for hybrid electrical energy storages

Output power in a hybrid power system is constant while the input power with variable characteristics that is generated by different sources. Using Hybrid Electrical Energy Storage (HEES) systems, is growing rapidly since there is an obvious need for clean energy. This paper introduces different parts of a HEES system and then proposes HEES systems which employ battery, ultracapacitor and f...

متن کامل

Compensation of Voltage and Current Harmonics in Hybrid Renewable Energy System Using Coordinated Power Control of RES Inverter

In this paper, an adaptive control strategy is proposed for the inverters of renewable energy source (RES) to simultaneously control the load voltage, grid current and the amount of instantaneous injected power to the grid in the presence of grid voltage distortions and nonlinearity of load current. In the proposed control strategy, the power quality of the local load can be settled based on th...

متن کامل

CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computation...

متن کامل

An Advanced Hysteresis Controller to Improve Voltage Profile of Power System with PV Units: A Smart Grid Power Exchange Framework

Unlike traditional power grids, smart grids have the advantage of bidirectional power flow and having distributed generations. Distributed generation systems are usually supplied by renewable sources which can cause unpredicted voltage fluctuations as a result of being intermittent. While traditional compensating devices deal with the problem of voltage fluctuation and reduced power quality wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017